We first study the sequence x_{n+1}=\dfrac{1}{2}(x_n+\dfrac{a}{x_n}), where a=2,x_1=1 and examine the numbers x_2,x_3,x_4,x_5 : x_2=\dfrac{1}{2}(1+2)=1.5\\x_3=\dfrac{1}{2}(1.5+\dfrac{2}{1.5})\approx 1.4167\\x_4=\dfrac{1}{2}(1.4167+\dfrac{2}{1.4167})\approx1.4142\\x_5=\dfrac{1}{2}(1.4142+\dfrac{2}{1.4142})\approx 1.4142\\ \cdots We can show that the sequence tends to \sqrt{2}. More generally, take l=\lim x_n, so l=\lim x_{n+1} and so\begin{align*}l&=\dfrac{1}{2}(l+\dfrac{a}{l})\\ 2l^2&=l^2+a\\ l&=\sqrt{a}\;\;\text{(reject the negative number because }\;x_n>0).\end{align*} This sequence helps us generate the square root of any positive number. You may ask: how can we come up with such a sequence? The reasoning is as follows: if x_1\neq \sqrt{a}, then we have x_1<\sqrt{a} or x_1>\sqrt{a}. In the first case, we have \sqrt{a} x_1<a or \sqrt{a}<\dfrac{a}{x_1}. In the other case, if x_1>\sqrt{a}, then \sqrt{a}>\dfrac{a}{x_1}. Therefore, we have x_1<\sqrt{a}<\dfrac{a}{x_1} or \dfrac{a}{x_1}<\sqrt{a}<x_1. If we take the average of x_1 and \dfrac{a}{x_1}, namely x_2=\dfrac{1}{2}(x_1+\dfrac{a}{x_1}), then the result will be between x_1 and \dfrac{a}{x_1}. Repeat this process several times: x_3=\dfrac{1}{2}(x_2+\dfrac{a}{x_2}), x_4=\dfrac{1}{2}(x_3+\dfrac{a}{x_3}) \cdots The sequence (x_n) tends to \sqrt{a}.
In fact, the sequence for square root can be generalised to one for nth root. x_{n+1}=\dfrac{1}{p}\bigg((p-1)x_n+\dfrac{a}{x_n^{p-1}}\bigg) The reasoning is similar. We consider \underbrace{x_n\times x_n\times \cdots\times x_n}_{p-1\; times}\times \dfrac{a}{x_n^{p-1}}=a and take the average of these p factors.
These sequences are related to the method of Newton-Raphson. Finding the square root is equivalent to solving the equation x^2-a=0. Let f(x)=x^2-a. Then, x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)}=x_n-\dfrac{x_n^2-a}{2x_n}=\dfrac{1}{2}(x_n+\dfrac{a}{x_n}). As for the nth root, we can solve the equation x^p-a=0 and we have x_{n+1}=x_n-\dfrac{x_n^p-a}{px_n^{p-1}}=x_n-\dfrac{1}{p}x_n+\dfrac{a}{px_n^{p-1}}=\dfrac{1}{p}\bigg((p-1)x_n+\dfrac{a}{x_n^{p-1}}\bigg).
No comments:
Post a Comment