Loading web-font TeX/Math/Italic

Monday, 21 March 2016

Several inequalities

Let m,n\in \Bbb N, x\in \Bbb R, x\geq 0, x\neq 1. Prove the followings: if m>n, then \dfrac{x^m-1}{m}>\dfrac{x^n-1}{n}; if m<n, then \dfrac{x^m-1}{m}<\dfrac{x^n-1}{n}.

Proof:
Consider the case when m>n. The other case is similar. It suffices to show that n(x^m-1)-m(x^n-1)> 0 for x>1. \begin{align}n(x^m-1)-m(x^n-1)&=n(x-1)(x^{m-1}+x^{m-2}+\cdots+1)-m(x-1)(x^{n-1}+x^{n-2}+\cdots+1)\\&=n(x-1)(x^{m-1}+x^{m-2}+\cdots+x^n)+n(x-1)(x^{n-1}+x^{n-2}+\cdots+1)\\&\quad-m(x-1)(x^{n-1}+x^{n-2}+\cdots+1)\\&=n(x-1)(x^{m-1}+x^{m-2}+\cdots+x^n)\\&\quad-(m-n)(x-1)(x^{n-1}+x^{n-2}+\cdots+1)\\&> (x-1)[n\underbrace{(x^n+\cdots+x^n)}_{m-n\; terms}-(m-n)\underbrace{(x^n+\cdots+x^n)}_{n\; terms}]\qquad(*)\\&=(x-1)x^n[n(m-n)-(m-n)n]\\&=0\qquad \Box\end{align}
In (*), we have used the facts that x^{m-i}\geq x^n when i=1,\cdots,m-n and -x^{n-j}\geq -x^n where j=1,\cdots,n. The case for 0\leq x<1 also holds because we have -x^{m-i}\geq -x^n when i=1,\cdots,m-n and -x^{n-j}\leq -x^n where j=1,\cdots,n.

Remark: This result implies that the sequence of functions f_n(x)=\dfrac{x^n-1}{n} is increasing when x is fixed and x>1. The term -1 there is crucial. Recall the taylor series of e^x and exponential functions: e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\cdots\\ 2^x=e^{(\ln 2)x}=1+(\ln 2)x+\dfrac{((\ln 2)x)^2}{2!}+\cdots.
Then \dfrac{e^x-1}{x}=1+\dfrac{x}{2}+\dfrac{x^2}{6}+\dfrac{x^3}{24}+\cdots, whereas \dfrac{e^x}{x} or \dfrac{e^x+5}{x} contains the expression \dfrac{1}{x}, which means there will be asymptotes.

We can use the proved inequalities to prove some other inequalities.

Let a,b\in \Bbb R, a>0, b>0, a\neq b, r\in \Bbb Q Then rb^{r-1}(a-b)<a^r-b^r<ra^{r-1}(a-b)\quad r>1\\ ra^{r-1}(a-b)<a^r-b^r<rb^{r-1}(a-b)\quad 0<r<1.
Proof:
When we divide the inequalities by b^r, we will see that they resemble the inequalities that we have proved. We just prove the case when r>1. Let r=\dfrac{m}{n}, where m,n\in \Bbb N. r>1\Rightarrow m>n. Substituting x=(\dfrac{a}{b})^{1/n} gives \dfrac{(\dfrac{a}{b})^{m/n}-1}{m}>\dfrac{(\dfrac{a}{b})^{m/n}-1}{n}\\ \dfrac{a^r-b^r}{mb^r}>\dfrac{a-b}{bn}\\ a^r-b^r>rb^{r-1}(a-b).
Similarly, substituting x=(\dfrac{b}{a})^{1/n} yields \dfrac{(\dfrac{b}{a})^{m/n}-1}{m}>\dfrac{(\dfrac{a}{b})^{n/n}-1}{n}\\ \dfrac{b^r-a^r}{ma^r}>\dfrac{b-a}{an}\\ a^r-b^r<ra^{r-1}(a-b).\qquad \Box

No comments:

Post a Comment