Recall \cos(\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \alpha. We then have \cos((n+1)\theta)=\cos \theta \cos n\theta-\sin \theta \sin n\theta\\ \cos((n-1)\theta)=\cos \theta \cos n\theta+\sin \theta \sin n\theta\\ \cos((n+1)\theta)=2\cos \theta \cos n\theta-\cos ((n-1)\theta)\quad (*)We claim that for each non-negative integer n, there exist integers c_i such that \cos n\theta=\sum_{i=0}^n c_i\cos^i\theta (can be proved by induction). Namely \cos(n\theta)=T_n(\cos \theta). Let x=\cos \theta. Then we have Chebyshev polynomials T_n(x)=\cos(n\arccos x) for x\in [-1,1] (since \arccos x is only defined in [-1,1]).
The equation (*) also leads to Chebyschev recurrence relation T_{n+1}(x)=2xT_n(x)-T_{n-1}(x). In fact, each T_n is actually an algebraic polynomial of degree n: T_0(x)=\cos(0)=1\\ T_1(x)=\cos(\arccos x)=x\\ T_2(x)=\cos (2\arccos x)=\cos^2 y-\sin^2 y=\cos^2 y-(1-\cos^2 y)=2x^2-1,\quad \cos y=x\\ T_3(x)=\cos (3\arccos x)=4x^3-3x They can also be derived using the recurrence relation.
Application
Errors in Polynomial Interpolation
More to learn
More to learn 2
No comments:
Post a Comment