Show that if f is holomorphic, then \Delta|f(z)+z|^2=4|f'(z)+1|^2.
There are two ways to deal with the modulus: either use the formula |z|^2=z\bar{z} or separate z into real and imaginary parts. For ease of calculations, we separate f(z)+z into real and imaginary parts, having \Delta|f(z)+z|^2=\Delta\bigg((u+x)^2+(v+y)^2\bigg). [Here u,v are actually u(x,y) and v(x,y) respectively.] \partial_x \bigg((u+x)^2+(v+y)^2\bigg)=2(u+x)(u_x+1)+2(v+y)v_x\\ \partial_x^2 \bigg((u+x)^2+(v+y)^2\bigg)=2(u+x)u_{xx}+2(v+y)v_{xx}+2(u_x+1)^2+2v_x^2 Therefore, \Delta\bigg((u+x)^2+(v+y)^2\bigg)=2(u+x)(u_{xx}+u_{yy})+2(v+y)(v_{xx}+v_{yy})\\+2\bigg( (u_x+1)^2+v_x^2+u_y^2+(v_y+1)^2\bigg). Since f is holomorphic, we have u_{xx}+u_{yy}=0\\ v_{xx}+v_{yy}=0\\ u_x=v_y,\quad u_y=-v_x. Finally, \Delta|f(z)+z|^2=4\bigg( (u_x+1)^2+u_y^2\bigg)=4|f'(z)+1|^2 since f'(z)+1=u_x+1+iu_y and |f'(z)+1|=(u_x+1)^2+u_y^2.
No comments:
Post a Comment