Processing math: 100%

Friday, 11 September 2015

Find \min x^2+y^2+z^2

If ax+by+cz=k, prove that the minimum value of x^2+y^2+z^2 is \dfrac{k^2}{a^2+b^2+c^2}.



Since (x^2+y^2+z^2)(a^2+b^2+c^2)-(ax+by+cz)^2=(ay-bx)^2+(bz-cy)^2+(cx-az)^2\geq 0, we have x^2+y^2+z^2\geq \frac{(ax+by+cz)^2}{a^2+b^2+c^2}=\frac{k^2}{a^2+b^2+c^2}.
Alternatively, we can use geometric arguments. The normal of ax+by+cz=k is \vec{n_1}=(a,b,c). The normal of x^2+y^2+z^2 is \vec{n_2}=(2x,2y,2z). Applying Cauchy Schwartz inequality for \vec{n_1} and \vec{n_2}: \vec{n_1}\cdot\vec{n_2}\leq \lVert \vec{n_1}\rVert \lVert \vec{n_2}\rVert, we have 2(ax+by+cz)\leq 2\sqrt{a^2+b^2+c^2} \sqrt{x^2+y^2+z^2}, which means x^2+y^2+z^2\geq \dfrac{k^2}{a^2+b^2+c^2}.

No comments:

Post a Comment