A basis of a vector space V is subset \{v_1,\cdots,v_n\} \subset V satisfying the two properties:
(i) \{v_1,\cdots,v_n\} spans V;
(ii) \{v_1,\cdots,v_n\} is linearly independent.
(i) To show spanning: Take an arbitrary vector v \in V, and show that v can be written as a linear combination of v_1, \cdots,v_n, namely, v=a_1v_1+\cdots+a_nv_n.
(ii) To show linearly independence: Prove that a_1v_1+\cdots+a_nv_n=0 implies a_1=a_2=\cdots=a_n=0.
Let au_1(x)+bu_2(x)=0. Differentiating \Rightarrow au_1'(x)+bu_2'(x)=0.
If W(u_1,u_2)=\begin{vmatrix} u_1 & u_2 \\ u_1' & u_2' \end{vmatrix}=u_1u_2'-u_2u_1' \neq 0, then a=b=0 and u_1 and u_2 are linearly independent.
Note: W(u_1, u_2) is known as the Wronskian determinant of functions u_1 and u_2.
Examples:
Spanning
1 and i are linearly independent in \mathbb{C} regarded as a vector space over \mathbb{R} but they are linearly dependent if \mathbb{C} is regarded as a complex vector space.
u_1(x)=\sin x and u_2(x)=\cos x are linearly independent.
Proof: Let a\sin x +b\cos x=0.
Differentiating \Rightarrow a\cos x-b\sin x=0.
So a=b \sin x (\cos x)^{-1} \Rightarrow b(\sin^2 x (\cos x)^{-1}+\cos x)=0
\Rightarrow b (\cos x)^{-1}=0 \Rightarrow b=0 Thus a=b=0.
Alternatively, W(u_1,u_2)=u_1u_2'-u_2u_1'=-\sin^2 x-\cos^2 x=-1 \Rightarrow linear independence.
Show that the functions x, xe^x, e^{-x} are linearly independent in the vector space C^\infty(\mathbb{R}).
Proof: Suppose ax+bxe^x+ce^{-x}=0 for all x \in \mathbb{R}, where a,b,c are constants.
Method I – Differentiation:
\begin{align}\: & ax+bxe^x+ce^{-x}=0 \; &(1)\\
\text{Differentiate both sides:}\: & a+be^x+bxe^x-ce^{-x}=0 \; &(2)\\
\text{Differentiate again:}\: & 2be^x+bxe^x+ce^{-x}=0 \; &(3)\\
\text{Differentiate yet again:}\: & 3be^x+bxe^x-ce^{-x}=0 \; &(4)\\
\text{And again:}\: & 4be^x+bxe^x+ce^{-x}=0 \; &(5) \end{align}
(5)-(3) \Rightarrow 2be^x=0 \Rightarrow b=0
Substitute b=0 in (3) \Rightarrow c=0.
Substitue b=c=0 in (2) \Rightarrow a=0.
Method II – Limit:
For any x \neq 0 divide both sides by xe^x. Then, ae^{-x}+b+cx^{-1}e^{-2x}=0
L.H.S approaches b as x \to +\infty \Rightarrow b=0.
Now ax+ce^{-x}=0 for all x \in \mathbb{R}.
For any x \neq 0 divide both sides by x. Then a+cx^{-1}e^{-x}=0.
L.H.S. approaches a as x \to +\infty \Rightarrow a=0.
Now ce^{-x}=0 \Rightarrow c=0.
Linear Independence in function spaces
Applications in ordinary differential equations [later]
Reference:
Linear independence
No comments:
Post a Comment