Processing math: 100%

Friday, 19 June 2015

Inverse trigonometric functions

A fast way to find inverse functions (only for simple functions)
Note that a function and its inverse undo each other. Say f(x)=2x+1. The function f takes x and multiplies it by 2 and then adds 1. To undo that, we go in reverse orders. We first subtract 1 from x and then we divide the whole thing by 2, giving us f^{-1}(x)=\frac{x-3}{2}. Here's one more example. Say f(x)=\sqrt{x+2}. f takes x, adds 2 and then take the square root. To undo the square root, we square x; and then instead of adding 2, we subtract 2. So f^{-1}(x)=x^2-2. Last example: f(x)=\frac{1}{x+4}-2. f takes x, adds 4, inverses the sum and then minuses 2. f^{-1} adds 2, inverses the sum and lastly minuses 4. f^{-1}(x)=\frac{1}{x+2}-4
[Here we are using the term "function" loosely. Formally, when one talks about a function, the domain and codomain should be specified. For simplicity, we only provide the expression of the function.]

Differentiating inverse functions
Consider a linear function l(x)=mx+b. Its inverse will be l^{-1}(y)=\frac{1}{m}y-\frac{b}{m}. We then have l'(x)=m and (l^{-1})'(y)=\frac{1}{m}, the reciprocal. We can express this by \frac{dx}{dy}=\frac{1}{\frac{dy}{dx}}.

Flipping the graphs preserves tangency.

Since the line y=mx+b is tangent to the curve on the left and flipping the drawing should preserve this tangency, the line x=\frac{1}{m}y-\frac{b}{m} is the tangent line to x=f^{-1}(y) at (y_0,x_0) and its slope \frac{1}{m} should be the derivative (f^{-1})'(y_0). Since m=f'(x_0), we conclude that (f^{-1})'(y_0)=\frac{1}{f'(x_0)}=\frac{1}{f'(f^{-1}(y_0))}, or equivalently f'(x_0)=\frac{1}{(f^{-1})'(f(x_0))}.

Examples:
Find the derivative of the inverse of this real function f(x)=2x+\cos x.
f'(x)=2-\sin x.
(f^{-1})'(x)=\frac{1}{f'(f^{-1}(x))}=\frac{1}{2-\sin f^{-1}(x)}.

Let y=f(x)=x^7+4x-5. Find (f^{-1})'(-5).
Note that y=-5 corresponds to x=0. Also, f'(x)=7x^6+4, so (f^{-1})'(-5)=\frac{1}{f'(0)}=\frac{1}{4}.

Inverse trigonometric functions and their derivatives

Sine and arcsine
The sine function f: \mathbb{R} \to [-1,1] \; f(x)=\sin x is not one-to-one, but if we restrict the domain to be [-\frac{\pi}{2},\frac{\pi}{2}], f becomes one-to-one.

We have \sin^{-1}y=x \iff \sin x=y \quad \text{and} \quad -\frac{\pi}{2}\leq x \leq \frac{\pi}{2}.
Then f^{-1}: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}] \quad f^{-1}(x)=\sin^{-1}x.

The cancellation equations for inverse functions become
\sin^{-1}(\sin x)=x \quad -\frac{\pi}{2}\leq x \leq\frac{\pi}{2}
\sin(\sin^{-1} x)=x \quad -1 \leq x \leq 1.

                  
y=\sin x, -\frac{\pi}{2}\leq x \leq\frac{\pi}{2}              y=\sin^{-1} x, -1\leq x \leq 1

Let y=\sin^{-1}x. Then y'=\frac{1}{\cos y} from the formula we discussed earlier. Alternatively, one can differentiate \sin y=x implicitly with respect to x to yield the same result. Now \cos y \geq 0 since -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}. We have \cos y=\sqrt{1-\sin^2{y}}=\sqrt{1-x^2}, thus \frac{d}{dx}(\sin^{-1}x)=\frac{1}{\sqrt{1-x^2}} \quad -1<x<1.

Cosine and arccosine
The inverse cosine function is handled similarly. The restricted cosine function f(x)=\cos x, 0\leq x\leq \pi, is one-to-one and so has an inverse function.

                  
y=\cos x, 0 \leq x \leq \pi                     y=\cos^{-1} x, -1\leq x \leq 1

We have \cos^{-1}y=x \iff \cos x=y \quad \text{and} \quad 0\leq x \leq \pi
and f^{-1}: [-1,1] \to [0,\pi] \quad f^{-1}(x)=\cos^{-1}x. Its derivative is given by \frac{d}{dx}(\cos^{-1}x)=-\frac{1}{\sqrt{1-x^2}} \quad -1<x<1.

Tangent and arctangent
The tangent function can be made one-to-one by restricting its domain to (-\frac{\pi}{2},\frac{\pi}{2}).

We have \tan^{-1}y=x \iff \tan x=y \quad \text{and} \quad -\frac{\pi}{2}\leq x \leq \frac{\pi}{2}
and f^{-1}: \mathbb{R} \to (-\frac{\pi}{2},\frac{\pi}{2}) \quad f^{-1}(x)=\tan^{-1}x.
We know that \lim\limits_{x \to \frac{\pi}{2}^-} \tan x=\infty and \lim\limits_{x \to -\frac{\pi}{2}^+} \tan x=-\infty, namely, x=\pm \frac{\pi}{2} are vertical asymptotes of the graph of \tan x. The graph of \tan^{-1} is obtained by reflecting the graph of the restricted tangent function about y=x, it follows that y=\pm \frac{\pi}{2} are horizontal asymptotes of the graph of \tan^{-1}. We thus have \lim\limits_{x \to \infty} \tan^{-1} x=\frac{\pi}{2} and \lim\limits_{x \to -\infty} \tan^{-1} x=-\frac{\pi}{2}.

                  
y=\tan x, -\frac{\pi}{2}\leq x \leq\frac{\pi}{2}                        y=\tan^{-1} x, x \in \mathbb{R}

The derivative of the arctangent function is \frac{d}{dx}(\tan^{-1}x)=\frac{1}{1+x^2} \quad -1<x<1.

Inverse Hyperbolic Function and Their Derivatives

Inverse function integration
Suppose f is a continuous one-to-one function. Then \int f^{-1}(x)dx=xf^{-1}(x)-\int f(u) d(u)=xf^{-1}(x)-F(f^{-1}(x)).

Definite integral version
\int_a^b f^{-1}(x)=[xf^{-1}(x)]_a^b-\int_{f^{-1}(a)}^{f^{-1}(b)} f(u) du=[xf^{-1}(x)]_a^b-F(f^{-1}(b))+F(f^{-1}(a))

Examples:
\begin{align} \int \arctan x \:dx &= x\arctan x-\int \tan u \:du \quad [u=\arctan x]\\ &=x\arctan x+\ln|\cos u|+C\\ &=x\arctan x-\frac{1}{2}\ln(1+x^2)+C \end{align}
since \ln|\cos u|=\frac{1}{2}\ln(\cos^2 u)=-\frac{1}{2}\ln(\sec^2 u)=-\frac{1}{2}\ln(1+x^2).

\int \ln x \:dx=x\ln x-x+C
\int \arccos x \:dx=x\arccos x-\sin(\arccos x)+C

Here's an interesting theorem.
If f(a)=c and f(b)=d, we have \int_c^d f^{-1}(y)dy\:\text{[blue region]}+\int_a^b f(x)dx\:\text{[grey region]}=bd-ac.
Proof without words
Higher derivatives
Related

Reference:
Differentiating inverse functions
Inverse trigonometric functions and their derivatives

No comments:

Post a Comment