
2s=2t+2(c-t)+2(b-t)
\begin{cases} s=b+c-t\:\:\:(1)\\2s=b+c+a\:\:\:(2)\end{cases}
(2)-(1), s=a+t \Rightarrow t=s-a
\text{From (1)}, s-b=c-t\:\text{and}\: s-c=b-t

\begin{cases}\tan \frac{A}{2}=\frac{R}{s-a} \\ \tan \frac{B}{2}=\frac{R}{s-b}\end{cases}\\ \Rightarrow \large \tan \frac{A}{2} \tan \frac{B}{2}=\frac{R^2}{(s-a)(s-b)}
Similarly,
\large{\tan \frac{A}{2} \tan \frac{C}{2}=\frac{R^2}{(s-a)(s-c)}\\ \tan \frac{B}{2} \tan \frac{C}{2}=\frac{R^2}{(s-b)(s-c)}}
Adding all the three results,
\large{\tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{A}{2} \tan \frac{C}{2}+\tan \frac{B}{2} \tan \frac{C}{2}\\ =R^2[\frac{1}{(s-a)(s-b)}+\frac{1}{(s-a)(s-c)}+\frac{1}{(s-b)(s-c)}]\\ =R^2[\frac{s-c+s-b+s-a}{(s-a)(s-b)(s-c)}]\\ =\frac{R^2s}{(s-a)(s-b)(s-c)}}
Now, A+B=\pi-C.
\frac{A}{2}+\frac{B}{2}=\frac{\pi}{2}-\frac{C}{2}\\ \large{\tan (\frac{A}{2}+\frac{B}{2})=\frac{1}{\tan \frac{C}{2}}\\ \frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2} \tan \frac{B}{2}}=\frac{1}{\tan \frac{C}{2}}\\ \tan \frac{A}{2} \tan \frac{C}{2}+\tan \frac{B}{2} \tan \frac{C}{2}=1-\tan \frac{A}{2} \tan \frac{B}{2}\\ \tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{A}{2} \tan \frac{C}{2}+\tan \frac{B}{2} \tan \frac{C}{2}=1}
\large{\therefore 1=\frac{R^2s}{(s-a)(s-b)(s-c)}\\ R=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}}
Area of \triangle ABC=\frac{1}{2}(aR+bR+cR)=sR=\sqrt{s(s-a)(s-b)(s-c)}\:\Box
\text{From (1)}, s-b=c-t\:\text{and}\: s-c=b-t

\begin{cases}\tan \frac{A}{2}=\frac{R}{s-a} \\ \tan \frac{B}{2}=\frac{R}{s-b}\end{cases}\\ \Rightarrow \large \tan \frac{A}{2} \tan \frac{B}{2}=\frac{R^2}{(s-a)(s-b)}
Similarly,
\large{\tan \frac{A}{2} \tan \frac{C}{2}=\frac{R^2}{(s-a)(s-c)}\\ \tan \frac{B}{2} \tan \frac{C}{2}=\frac{R^2}{(s-b)(s-c)}}
Adding all the three results,
\large{\tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{A}{2} \tan \frac{C}{2}+\tan \frac{B}{2} \tan \frac{C}{2}\\ =R^2[\frac{1}{(s-a)(s-b)}+\frac{1}{(s-a)(s-c)}+\frac{1}{(s-b)(s-c)}]\\ =R^2[\frac{s-c+s-b+s-a}{(s-a)(s-b)(s-c)}]\\ =\frac{R^2s}{(s-a)(s-b)(s-c)}}
Now, A+B=\pi-C.
\frac{A}{2}+\frac{B}{2}=\frac{\pi}{2}-\frac{C}{2}\\ \large{\tan (\frac{A}{2}+\frac{B}{2})=\frac{1}{\tan \frac{C}{2}}\\ \frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2} \tan \frac{B}{2}}=\frac{1}{\tan \frac{C}{2}}\\ \tan \frac{A}{2} \tan \frac{C}{2}+\tan \frac{B}{2} \tan \frac{C}{2}=1-\tan \frac{A}{2} \tan \frac{B}{2}\\ \tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{A}{2} \tan \frac{C}{2}+\tan \frac{B}{2} \tan \frac{C}{2}=1}
\large{\therefore 1=\frac{R^2s}{(s-a)(s-b)(s-c)}\\ R=\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}}
Area of \triangle ABC=\frac{1}{2}(aR+bR+cR)=sR=\sqrt{s(s-a)(s-b)(s-c)}\:\Box
No comments:
Post a Comment