Non-degenerate real quadric surfaces
\frac{x^2}{a^2}+\frac{y^2}{b^2}-z=0\\
z=\frac{x^2}{a^2}+\frac{y^2}{b^2}
Consider the horizontal cross section (level curve) of z by setting z=c.
We have \frac{x^2}{a^2}+\frac{y^2}{b^2}=c, which is the equation for an ellipse.
Now consider the vertical cross section of z at x=c.
We get z=\frac{c^2}{a^2}+\frac{y^2}{b^2} -- a constant plus \frac{y^2}{b^2}, which is the equation of a parabola. Similarly, the vertical cross section of z at y=c is also a parabola.
We know that the figure is a elliptical paraboloid.
When we change b (denominator) to a, we have a circular paraboloid.
\frac{x^2}{a^2}-\frac{y^2}{b^2}-z=0\\
z=\frac{x^2}{a^2}-\frac{y^2}{b^2}
Horizontal cross section: \frac{x^2}{a^2}-\frac{y^2}{b^2}=c\:\:[z=c]\Rightarrow hyperbola
Vertical cross section: \frac{x^2}{a^2}- \text{constant} or \text{constant} - \frac{y^2}{b^2} \Rightarrow parabola
Surface: Hyperbolic paraboloid
\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1
Horizontal cross section: \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{k^2}{c^2}+1\:\:[z=k] \Rightarrow ellipse
Vertical cross section: \frac{x^2}{a^2}-\frac{z^2}{c^2}=1-\frac{m^2}{b^2}\:\:[y=m] or \frac{y^2}{b^2}-\frac{z^2}{c^2}=1-\frac{n^2}{a^2}\:\:[x=n] \Rightarrow hyperbola
Surface: Elliptical hyperboloid of one sheet
\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1
Horizontal cross section: \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{k^2}{c^2}-1\:\:[z=k] \Rightarrow generally ellipse
There are no horizontal cross sections when z is between -1 and 1. For simplicity, we can look at the equation -x^2-y^2+z^2=1. Suppose z=0. Then the left hand side is negative, but the right hand side is positive. There's no way to fix this, so the cross section simply doesn't exist!
Vertical cross section: \frac{z^2}{c^2}-\frac{x^2}{a^2}=1+\frac{m^2}{b^2}\:\:[y=m] or \frac{z^2}{c^2}-\frac{y^2}{b^2}=1+\frac{n^2}{a^2}\:\:[x=n] \Rightarrow hyperbola
Surface: Elliptical hyperboloid of two sheets
Here's a hint about telling the two kinds of hyperboloids apart: look at the cross sections x=0, y=0, and z=0 (respectively but not simultaneously). If they exist, then it's a hyperboloid of one sheet. If you end up with something negative equal to something positive, it's a hyperboloid of two sheets.
Degenerate quadric surfaces
\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=0
Horizontal cross section: \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{k^2}{c^2}\:\:[z=k] \Rightarrow ellipse
Vertical cross section:
(1) \frac{z^2}{c^2}-\frac{x^2}{a^2}=\frac{m^2}{b^2}\:\:[y=m] or \frac{z^2}{c^2}-\frac{y^2}{b^2}=\frac{n^2}{a^2}\:\:[x=n] \Rightarrow hyperbola
(2) \frac{x^2}{a^2}-\frac{z^2}{c^2}=0\:\:[y=0] or \frac{y^2}{b^2}-\frac{z^2}{c^2}=0\:\:[x=0] \iff (\frac{x}{a}-\frac{z}{c})(\frac{x}{a}+\frac{z}{c})=0 or (\frac{y}{b}-\frac{z}{c})(\frac{y}{b}+\frac{z}{c})=0 \Rightarrow pair of straight lines
Surface: Elliptic Cone
\frac{x^2}{a^2}+\frac{y^2}{a^2}-\frac{z^2}{b^2}=0 -- Special case of cone (Circular cone)
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 -- Elliptic cylinder
\frac{x^2}{a^2}+\frac{y^2}{a^2}=1 -- Circular cylinder
\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 -- Hyperbolic cylinder
Useful website:
Quadric surfaces
No comments:
Post a Comment