1. Direct Integration
It's not too difficult to recognise integrals of the form \int f(x)f'(x)dx=\int f(x) d[f(x)].
Example:
It's not too difficult to recognise integrals of the form \int f(x)f'(x)dx=\int f(x) d[f(x)].
Example:
\int (5x^3+4x^2)(15x^2+8x)dx\\= \int (5x^3+4x^2) d(5x^3+4x^2)\\= \frac{(5x^3+4x^2)^2}{2}+C
2. Expansion
Whenever we see (x ± )^(a number) and it seems that substitution won't work, expansion is a good approach.
Example:
\int (x^2-1)^6 dx\\= \int (x^{12}-6x^{10}+15x^8-20x^6+15x^4-6x^2+1) dx\\= \frac{x^{13}}{13}-6\frac{x^{11}}{11}+5\frac{x^9}{3}-20\frac{x^7}{7}+\frac{x^5}{3}-2x^3+x+C
Whenever we see (x ± )^(a number) and it seems that substitution won't work, expansion is a good approach.
Example:
\int (x^2-1)^6 dx\\= \int (x^{12}-6x^{10}+15x^8-20x^6+15x^4-6x^2+1) dx\\= \frac{x^{13}}{13}-6\frac{x^{11}}{11}+5\frac{x^9}{3}-20\frac{x^7}{7}+\frac{x^5}{3}-2x^3+x+C
3. Substitution
Fundamental Theorem of Calculus
Example:
\large \int_0^1 \frac{x^t-1}{\ln x} dx where t\geq 0
Let \large{F(t)=\int_0^1 \frac{x^t-1}{\ln x}dx\\ \begin{align}F'(t)&=\frac{d}{dt}\int_0^1\frac{x^t-1}{\ln x}dx\\ &=\int_0^1 \frac{d}{dt}\frac{x^t-1}{\ln x}dx\\ &=\int_0^1\frac{1}{\ln x}\frac{d}{dt}(x^t-1)dx \:\:\:\:\:[\frac{d}{dx}x^t=x^t \ln x]\\ &=\int_0^1 x^t dx\\ &=\frac{1}{t+1}\end{align}}
Integrate again,
F(t)=\ln(t+1)+C
Since F(0)=0, we have C=0 and F(t)=\ln(t+1).
Make use of known integrals
i. u-substitution
ii. trig-substitution
[How to find the right substitution?]
[<=> change of coordinates]
[<=> linear algebra]
[<=> change of coordinates]
[<=> linear algebra]
4. Integration by parts
\frac{d}{dx}(uv)=u\frac{dv}{dx}+v\frac{du}{dx}\\ uv=\int udv+\int vdu\\ \int udv=uv - \int vdu
[How to know which is u and which is v?]
[How to know which is u and which is v?]
6. Reduction formula
Technical.
Technical.
Special methods:
3. Substitution (cont'd)
iii. Weierstrass t-substitution / Tangent half-angle substitution
Fundamental Theorem of Calculus
Example:
\large \int_0^1 \frac{x^t-1}{\ln x} dx where t\geq 0
Let \large{F(t)=\int_0^1 \frac{x^t-1}{\ln x}dx\\ \begin{align}F'(t)&=\frac{d}{dt}\int_0^1\frac{x^t-1}{\ln x}dx\\ &=\int_0^1 \frac{d}{dt}\frac{x^t-1}{\ln x}dx\\ &=\int_0^1\frac{1}{\ln x}\frac{d}{dt}(x^t-1)dx \:\:\:\:\:[\frac{d}{dx}x^t=x^t \ln x]\\ &=\int_0^1 x^t dx\\ &=\frac{1}{t+1}\end{align}}
Integrate again,
F(t)=\ln(t+1)+C
Since F(0)=0, we have C=0 and F(t)=\ln(t+1).
Make use of known integrals
Manipulations
Change of coordinates (Transform into a double integral then switch to polar coordinates)
Let I = \int_0^\infty e^{-x^2}dx
I^2=\int_0^\infty e^{-x^2}dx \int_0^\infty e^{-y^2}dy
=\int_0^\infty[\int_0^\infty e^{-x^2}dx]e^{-y^2}dy
=\int_0^\infty \int_0^\infty e^{-(x^2+y^2)}dx dy
=\int_0^{\frac{\pi}{2}}\int_0^\infty e^{-r^2}rdr d\theta
=\int_0^{\frac{\pi}{2}}-\frac{1}{2}e^{-r^2}|_0^\infty d\theta
=\frac{\pi}{4}
It follows that I = \frac{\sqrt\pi}{2}.
Evaluate a general integral first: Parameter differentiation p56
Symmetry
http://www2.math.umd.edu/~punshs/Calculus/Integration.pdf
Odd function
\int_{-2}^2 (1-2x-x^{16} \sin x+17x^7\sqrt{1+x^2}-x^{11} \cos x )dx
Let f(x)=-2x-x^{16} \sin x+17x^7\sqrt{1+x^2}-x^{11} \cos x
f(-x)=2x+x^{16} \sin x-17x^7\sqrt{1+x^2}+x^{11} \cos x=-f(x)
\Rightarrow \int_{-2}^2 (1-2x-x^{16} \sin x+17x^7\sqrt{1+x^2}-x^{11} \cos x )dx\\=\int_{-2}^2 (1+f(x))dx\\=4
Linear Algebra
i. Orthogonality
Example:
\int_{-\pi}^\pi (3+2\sin x+3\cos x)(1+4\sin x)dx
1,\sin x,\cos x are orthogonal on [-\pi,\pi]
=\int_{-\pi}^\pi 3 dx+\int_{-\pi}^\pi 8\sin^2 x dx
=3(2\pi)+8\pi
=14\pi
ii. Change of basis
Example:
Let \mathbb{B}=\left\{1,\cos t,\cos^2 t,...,\cos^6 t\right\} and \mathbb{C}=\left\{1,\cos t,\cos 2t,...,\cos 6t\right\}.
By De Moivre's theorem,
\cos 2t=-1+2\cos^2 t
\cos 3t=-3\cos t+4\cos^3 t
\cos 4t=1-8\cos^2 t+8\cos^4 t
\cos 5t=5\cos t-20\cos^3 t+16\cos^5 t
\cos 6t=-1+18\cos^2 t-48\cos^4 t+32\cos^6 t
P=[\mathbb{B}]_\mathbb{C}=\begin{pmatrix} 1 & 0 & -1 & 0 & 1 & 0 & -1\\ 0 & 1 & 0 & -3 & 0 & 5 & 0 \\ 0 & 0 & 2 & 0 & -8 & 0 & 18 \\ 0 & 0 & 0 & 4 & 0 & -20 & 0 \\ 0 & 0 & 0 & 0 & 8 & 0 & -48 \\ 0 & 0 & 0 & 0 & 0 & 16 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 32 \end{pmatrix}
P^{-1}=\frac{1}{32}\begin{pmatrix} 32 & 0 & 16 & 0 & 12 & 0 & 10\\ 0 & 32 & 0 & 24 & 0 & 20 & 0 \\ 0 & 0 & 16 & 0 & 16 & 0 & 15 \\ 0 & 0 & 0 & 8 & 0 & 10 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
Say we want to evaluate \int (5\cos^3 t-6\cos^4 t+5\cos^5 t-12\cos^6 t)dt.
P^{-1}(0,0,0,5,-6,5,-12)=(-6,\frac{55}{8},-\frac{69}{8},\frac{45}{16},-3,\frac{5}{16},\frac{-3}{8})
\int (5\cos^3 t-6\cos^4 t+5\cos^5 t-12\cos^6 t)dt\\ =\int (-6+\frac{55}{8}\cos t-\frac{69}{8}\cos 2t+\frac{45}{16}\cos 3t-3\cos 4t+\frac{5}{16}\cos 5t-\frac{3}{8}\cos 6t)dt\\ =-6t+\frac{55}{8}\sin t-\frac{69}{16}\sin 2t+\frac{15}{16}\sin 3t-\frac{3}{4}\sin 4t+\frac{1}{16}\sin 5t-\frac{1}{16}\sin 6t+C
Geometry
\int_0^1 [(1-x^5)^{\frac{1}{4}}-(1-x^4)^{\frac{1}{5}}]dx
Note that \int_0^1 (1-x^5)^{\frac{1}{4}}dx=\int_0^1 (1-y^4)^{\frac{1}{5}}dy.
Both are the area bounded by x^5+y^4=1 with the x and y-axes.
So answer: 0.
Recursive [prob solv] refer to notebook
Probability density function
This will be explained in another post.
Examples:
Normal distribution
\large \int_{-\infty}^\infty e^{-4x^2}dx
\large =\int_{-\infty}^\infty exp\left\{\frac{x^2}{\frac{1}{4}} \right\}dx
\large =\int_{-\infty}^\infty exp\left\{\frac{x^2}{2(\frac{1}{8})} \right\}dx
\large \sigma^2=\frac{1}{8} and \mu =0
\large{\begin{align}\therefore \int_{-\infty}^\infty e^{-4x^2}dx &= \sqrt{\frac{1}{8}} \sqrt{2\pi} \int_{-\infty}^\infty \frac{1}{\sqrt{\frac{1}{8}} \sqrt{2\pi}}exp\left\{\frac{x^2}{2(\frac{1}{8})} \right\}dx\\ &=\sqrt{\frac{1}{8}} \sqrt{2\pi}\\ &=\frac{\sqrt{\pi}}{2}\end{align}}
Gamma distribution
\large \int_0^\infty 81e^{-3x}x^4dx
\large =\frac{\Gamma(5)}{3}\int_0^\infty \frac{3e^{-3x}(3x)^4}{\Gamma(5)}dx
\large =\frac{4!}{3}
\large =8
We can integrate a function of the form e^{-kx}x^s using gamma distribution. This avoids integrating by parts as many as s times.
Beta distribution
\large \int_0^1 x^5 (1-x^2)^9 dx
\large =\int_0^1 (x^2)^{\frac{5}{2}} (1-x^2)^9 dx
\large \stackrel{y=x^2}{=}\int_0^1 \frac{y^{\frac{5}{2}}(1-y)^9}{2\sqrt{y}}dy
\large =\frac{1}{2}\int_0^1 y^2(1-y)^9dy
\large =\frac{1}{2}B(3,10) \int_0^1 \frac{y^2(1-y)^9}{B(3,10)}dy
\large =\frac{1}{2}\frac{\Gamma(3)\Gamma(10)}{\Gamma(13)}
\large =\frac{1}{2}\frac{2!9!}{12!}
\large =\frac{1}{12\cdot 11\cdot 10}
\large =\frac{1}{1320}
Tabular Integration by Parts
Refer to http://www.maa.org/sites/default/files/pdf/mathdl/CMJ/Horowitz307-311.pdf
Comparing coefficients
Refer to https://johnmayhk.wordpress.com/2014/08/08/integration-by-comparing-coefficients/
Laplace transform <=> residue theory
Complex analysis
Change of coordinates (Transform into a double integral then switch to polar coordinates)
Let I = \int_0^\infty e^{-x^2}dx
I^2=\int_0^\infty e^{-x^2}dx \int_0^\infty e^{-y^2}dy
=\int_0^\infty[\int_0^\infty e^{-x^2}dx]e^{-y^2}dy
=\int_0^\infty \int_0^\infty e^{-(x^2+y^2)}dx dy
=\int_0^{\frac{\pi}{2}}\int_0^\infty e^{-r^2}rdr d\theta
=\int_0^{\frac{\pi}{2}}-\frac{1}{2}e^{-r^2}|_0^\infty d\theta
=\frac{\pi}{4}
It follows that I = \frac{\sqrt\pi}{2}.
Evaluate a general integral first: Parameter differentiation p56
Symmetry
http://www2.math.umd.edu/~punshs/Calculus/Integration.pdf
Odd function
\int_{-2}^2 (1-2x-x^{16} \sin x+17x^7\sqrt{1+x^2}-x^{11} \cos x )dx
Let f(x)=-2x-x^{16} \sin x+17x^7\sqrt{1+x^2}-x^{11} \cos x
f(-x)=2x+x^{16} \sin x-17x^7\sqrt{1+x^2}+x^{11} \cos x=-f(x)
\Rightarrow \int_{-2}^2 (1-2x-x^{16} \sin x+17x^7\sqrt{1+x^2}-x^{11} \cos x )dx\\=\int_{-2}^2 (1+f(x))dx\\=4
Linear Algebra
i. Orthogonality
Example:
\int_{-\pi}^\pi (3+2\sin x+3\cos x)(1+4\sin x)dx
1,\sin x,\cos x are orthogonal on [-\pi,\pi]
=\int_{-\pi}^\pi 3 dx+\int_{-\pi}^\pi 8\sin^2 x dx
=3(2\pi)+8\pi
=14\pi
ii. Change of basis
Example:
Let \mathbb{B}=\left\{1,\cos t,\cos^2 t,...,\cos^6 t\right\} and \mathbb{C}=\left\{1,\cos t,\cos 2t,...,\cos 6t\right\}.
By De Moivre's theorem,
\cos 2t=-1+2\cos^2 t
\cos 3t=-3\cos t+4\cos^3 t
\cos 4t=1-8\cos^2 t+8\cos^4 t
\cos 5t=5\cos t-20\cos^3 t+16\cos^5 t
\cos 6t=-1+18\cos^2 t-48\cos^4 t+32\cos^6 t
P=[\mathbb{B}]_\mathbb{C}=\begin{pmatrix} 1 & 0 & -1 & 0 & 1 & 0 & -1\\ 0 & 1 & 0 & -3 & 0 & 5 & 0 \\ 0 & 0 & 2 & 0 & -8 & 0 & 18 \\ 0 & 0 & 0 & 4 & 0 & -20 & 0 \\ 0 & 0 & 0 & 0 & 8 & 0 & -48 \\ 0 & 0 & 0 & 0 & 0 & 16 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 32 \end{pmatrix}
P^{-1}=\frac{1}{32}\begin{pmatrix} 32 & 0 & 16 & 0 & 12 & 0 & 10\\ 0 & 32 & 0 & 24 & 0 & 20 & 0 \\ 0 & 0 & 16 & 0 & 16 & 0 & 15 \\ 0 & 0 & 0 & 8 & 0 & 10 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
Say we want to evaluate \int (5\cos^3 t-6\cos^4 t+5\cos^5 t-12\cos^6 t)dt.
P^{-1}(0,0,0,5,-6,5,-12)=(-6,\frac{55}{8},-\frac{69}{8},\frac{45}{16},-3,\frac{5}{16},\frac{-3}{8})
\int (5\cos^3 t-6\cos^4 t+5\cos^5 t-12\cos^6 t)dt\\ =\int (-6+\frac{55}{8}\cos t-\frac{69}{8}\cos 2t+\frac{45}{16}\cos 3t-3\cos 4t+\frac{5}{16}\cos 5t-\frac{3}{8}\cos 6t)dt\\ =-6t+\frac{55}{8}\sin t-\frac{69}{16}\sin 2t+\frac{15}{16}\sin 3t-\frac{3}{4}\sin 4t+\frac{1}{16}\sin 5t-\frac{1}{16}\sin 6t+C
Geometry
\int_0^1 [(1-x^5)^{\frac{1}{4}}-(1-x^4)^{\frac{1}{5}}]dx
Note that \int_0^1 (1-x^5)^{\frac{1}{4}}dx=\int_0^1 (1-y^4)^{\frac{1}{5}}dy.
Both are the area bounded by x^5+y^4=1 with the x and y-axes.
So answer: 0.
Recursive [prob solv] refer to notebook
Probability density function
This will be explained in another post.
Examples:
Normal distribution
\large \int_{-\infty}^\infty e^{-4x^2}dx
\large =\int_{-\infty}^\infty exp\left\{\frac{x^2}{\frac{1}{4}} \right\}dx
\large =\int_{-\infty}^\infty exp\left\{\frac{x^2}{2(\frac{1}{8})} \right\}dx
\large \sigma^2=\frac{1}{8} and \mu =0
\large{\begin{align}\therefore \int_{-\infty}^\infty e^{-4x^2}dx &= \sqrt{\frac{1}{8}} \sqrt{2\pi} \int_{-\infty}^\infty \frac{1}{\sqrt{\frac{1}{8}} \sqrt{2\pi}}exp\left\{\frac{x^2}{2(\frac{1}{8})} \right\}dx\\ &=\sqrt{\frac{1}{8}} \sqrt{2\pi}\\ &=\frac{\sqrt{\pi}}{2}\end{align}}
Gamma distribution
\large \int_0^\infty 81e^{-3x}x^4dx
\large =\frac{\Gamma(5)}{3}\int_0^\infty \frac{3e^{-3x}(3x)^4}{\Gamma(5)}dx
\large =\frac{4!}{3}
\large =8
We can integrate a function of the form e^{-kx}x^s using gamma distribution. This avoids integrating by parts as many as s times.
Beta distribution
\large \int_0^1 x^5 (1-x^2)^9 dx
\large =\int_0^1 (x^2)^{\frac{5}{2}} (1-x^2)^9 dx
\large \stackrel{y=x^2}{=}\int_0^1 \frac{y^{\frac{5}{2}}(1-y)^9}{2\sqrt{y}}dy
\large =\frac{1}{2}\int_0^1 y^2(1-y)^9dy
\large =\frac{1}{2}B(3,10) \int_0^1 \frac{y^2(1-y)^9}{B(3,10)}dy
\large =\frac{1}{2}\frac{\Gamma(3)\Gamma(10)}{\Gamma(13)}
\large =\frac{1}{2}\frac{2!9!}{12!}
\large =\frac{1}{12\cdot 11\cdot 10}
\large =\frac{1}{1320}
Tabular Integration by Parts
Refer to http://www.maa.org/sites/default/files/pdf/mathdl/CMJ/Horowitz307-311.pdf
Comparing coefficients
Refer to https://johnmayhk.wordpress.com/2014/08/08/integration-by-comparing-coefficients/
Laplace transform <=> residue theory
Complex analysis
Good!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ReplyDelete