First Order Linear Differential Equations:
1. Separating variables
Example 1:
$\dfrac{dy}{dx}=f(y)\\
\dfrac{dy}{f(y)}=dx\\
\int \dfrac{dy}{f(y)}=\int dx$
Example 2:
$\dfrac{dy}{dx}=\dfrac{1}{f(x)f(y)}\\
f(y)dy=\dfrac{dx}{f(x)}\\
\int f(y)dy=\int \dfrac{dx}{f(x)}$
2. Integrating factors
To solve equations of the form
$a(x)\dfrac{dy}{dx}+b(x)y=c(x)$
i. Express in standard form
$\dfrac{dy}{dx}+p(x)y=q(x)$
ii. Multiply both sides by the integrating factor $e^{\int p(x) dx}$
iii. $\dfrac{d}{dx}(ye^{\int p(x) dx})=q(x)e^{\int p(x) dx}$
iv. $ye^{\int p(x) dx}=\int q(x)e^{\int p(x) dx}+C$
v. Divide both sides by the integrating factor
vi. Use initial conditions to find particular solutions
3. Laplace Transform
No comments:
Post a Comment