Loading web-font TeX/Math/Italic

Thursday, 1 January 2015

Differential equations

First Order Linear Differential Equations:
1. Separating variables
Example 1:
\dfrac{dy}{dx}=f(y)\\ \dfrac{dy}{f(y)}=dx\\ \int \dfrac{dy}{f(y)}=\int dx

Example 2:
\dfrac{dy}{dx}=\dfrac{1}{f(x)f(y)}\\ f(y)dy=\dfrac{dx}{f(x)}\\ \int f(y)dy=\int \dfrac{dx}{f(x)}

2. Integrating factors

To solve equations of the form
a(x)\dfrac{dy}{dx}+b(x)y=c(x)

i. Express in standard form
\dfrac{dy}{dx}+p(x)y=q(x)

ii. Multiply both sides by the integrating factor e^{\int p(x) dx}

iii. \dfrac{d}{dx}(ye^{\int p(x) dx})=q(x)e^{\int p(x) dx}

iv. ye^{\int p(x) dx}=\int q(x)e^{\int p(x) dx}+C

v. Divide both sides by the integrating factor

vi. Use initial conditions to find particular solutions

3. Laplace Transform

No comments:

Post a Comment